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Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations

K. A. Mirus and J. C. Sprott
Department of Physics, University of Wisconsin, Madison, Wisconsin 53706

~Received 29 June 1998!

The effect of applying a periodic perturbation to an accessible parameter of various chaotic systems is
examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable
periodic orbits of the chaotic systems can result in limit cycles for relatively small perturbations. Such pertur-
bations can also control or significantly reduce the dimension of high-dimensional systems. Initial application
to the control of fluctuations in a prototypical magnetic fusion plasma device will be reviewed.
@S1063-651X~99!11505-8#

PACS number~s!: 05.45.2a, 47.52.1j, 52.35.Mw, 52.55.Hc
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I. INTRODUCTION

Since the pioneering work of Ott, Grebogi, and Yor
~OGY! in controlling chaotic systems@1#, several other
methods for controlling chaos@2–18# have evolved based o
the principle that relatively small perturbations to a chao
system can stabilize unstable periodic orbits~UPO’s! pos-
sessed by that system. Such control schemes are attra
for two reasons. First, since chaotic systems possess an
nite number of unstable periodic orbits, a single physi
system can exhibit a wide variety of controlled behavio
Second, since the schemes are based on very general
erties of chaotic dynamics, they are applicable to a w
variety of seemingly unrelated physical systems. Con
methods inspired by the OGY method tend to be ‘‘close
loop’’ control systems in which the applied perturbation
determined by the state of the system. There also e
‘‘open-loop’’ control systems@19# in which the applied per-
turbation is independent of the system’s state; that is, the
no feedback loop. Such control schemes involved modu
ing the chaotic systems with random@20–25#, chaotic@26–
28#, or periodic signals@29–48#.

Here the open-loop control scheme of applying a perio
perturbation to an accessible system parameter is exam
for several different chaotic systems of increasing dimens
and realism. Previous work has focused on the effect o
single periodic perturbation to a single system. Here,
demonstrate the general effects of periodic perturbations
wide variety of systems. The numerical systems that h
been examined are the logistic equation~a one-dimensiona
quadratic map!, the Lorenz equations~a three-dimensiona
quadratic flow!, the Rössler equations~another three-
dimensional quadratic flow!, a coupled Lorenz cell model~a
96-dimensional polynomial flow!, the Yoshida equations
which a model magnetic fluctuations in a plasma fusion
vice ~a nine-dimensional polynomial flow!, and a neural ne
model for a fluctuating plasma~a 64-dimensional nonlinea
map!. Initial attempts to control magnetic fluctuations in th
Madison Symmetric Torus~MST! @49# will also be men-
tioned.

In applying these perturbations, drive frequencies w
sought for which a small amplitude would suffice to decre
the chaos in the system over a range of its parameters.
vious work found successful perturbation frequencies to
PRE 591063-651X/99/59~5!/5313~12!/$15.00
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rational multiples of periodic drive frequencies that initiat
the chaos@36–45#, the natural frequencies in a period
doubling route to chaos@46#, or frequencies corresponding t
peaks in the power spectrum@47,48#. However, it will be
shown that these predictors are not always reliable. Rat
the optimum perturbation frequencies correspond to ratio
multiples of the frequencies of UPO’s embedded in the
tractor. These UPO’s can be extracted directly from the ti
series of any state-space variable, and thus no model fo
system dynamics is required to predict optimum perturbat
frequencies.

In this study, the Lyapunov dimension is computed
determine the effect of the applied perturbations. T
Kaplan-Yorke conjecture @50–52# states that for an
N-dimensional system, the Lyapunov dimension, which is
approximation to the information dimension, can be co
puted from the spectrum of Lyapunov exponents (l1 ,...,lN)
when they are ordered from most positive to most negat
The first exponent in the spectrum,l1 , or the largest
Lyapunov exponent~LLE!, can be used by itself to diagnos
whether a system is chaotic or not. However, an app
perturbation may decrease the dimension of a system with
making the system periodic. The Lyapunov dimension p
vides a means of diagnosing this effect on high-dimensio
numerical systems, which would be impossible with mo
traditional time-series analysis. Note that applying a perio
perturbation increases the dimension of the system by o
because an extra state-space variable is added to the sy
The Lyapunov exponent associated with this new state-sp
variable is always zero, because it causes neither expone
expansion nor contraction. It is not necessarily obvious t
adding an external frequency to a system with an alre
broadband frequency spectrum will decrease its chaotic
havior, especially since three incommensurate frequen
can generally lead to chaos@53#.

II. THE LOGISTIC EQUATION

The logistic equation is a well-known one-dimension
map with the following form:

xn115axn~12xn!. ~1!

The controlling periodic perturbation was taken asa5a0
1a1 cos(2pn/T1w).
5313 ©1999 The American Physical Society
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FIG. 1. Logistic map bifurcation diagram fo
a T53 perturbation witha150.05 andw5p/2,
showing the unperturbed bifurcation diagram, t
perturbed map, its three composed maps, and
Lyapunov exponent.
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To compute the Lyapunov exponent spectrum for the p
turbed map, one can make it autonomous by splitting
map into two maps, with ‘‘time’’ represented by the seco
map. Letting xn(1)and xn(2) denote the two state-spac
variables at iterationn, the maps take the following form:

xn11~1!5$a01a1 cos@2pxn~2!/T1w#%xn~1!@12xn~1!#,
~2!

xn11~2!5xn~2!11.

An explicit computation of the Jacobian for these tw
maps shows that the two Lyapunov exponents are given

l15 lim
N→`

1

N (
n51

N

lnUFa01a1 cosS 2pxn~2!

T
1w D G

3@122xn~1!#U,
~3!

l25 lim
N→`

1

N (
n51

N

lnu1u50.
r-
e

y

Sincel2 is identically zero, calculation ofl1 suffices to
quantify the chaos. Previous analytic work@29–33# has lifted
the nonautonomy by examiningp composite maps formed
from thepth iterate maps for a period-p perturbation.

The choice of the period of the perturbation is simp
since the logistic map has unstable orbits of all integer p
ods, provided the parametera is large enough. In fact, ther
are 2p unstable periodic orbits for any UPO of periodicityp
whena54 @54#. Most of the literature has focused on low
period perturbations. Here we will illustrate that control c
be achieved for a period-three perturbation and that a pe
bation that does not correspond to any UPO can obliterate
periodic windows.

A period-three drive results in the following two equiva
lent autonomous systems:

xn11~1!5$a01a1 cos@~2p/3!xn~2!1w#%xn~1!@12xn~1!#,

xn11~2!5xn~2!11, ~4!
xn11~ i !52AiAi 11
4 Ai 12

2 xn~ i !814AiAi 11
4 Ai 12

2 xn~ i !7

22AiAi 11
3 Ai 12

2 ~3Ai 1111!xn~ i !612AiAi 11
3 Ai 12

2 ~2Ai 1113!xn~ i !5

2AiAi 11
2 Ai 12~Ai 11

2 Ai 1216Ai 11Ai 121Ai 1211!xn~ i !4

1AiAi 11
2 Ai 12~Ai 11Ai 121Ai 1211!xn~ i !3

2AiAi 11Ai 12~Ai 11Ai 121Ai 1111!xn~ i !21AiAi 11Ai 12xn~ i !, ~5!
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FIG. 2. Summary of effects ofT52 and 3
perturbations on the logistic map over a range
nominal parameter valuesa0 and perturbations
amplitudesa1 for different phases. Clockwise
from upper left:T52, w50; T52, w5p/3; T
53, w5p/2; T53, w50. Black indicates peri-
odic solutions; white chaotic solutions, and gra
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where theAi are cyclic on~1,2,3! and A15a01a1 cos(w),
A25a01a1 cos(2p/31w), and A35a01a1 cos(4p/31w).
Figure 1 shows the bifurcation diagram for theT53 case. In
this case, the period-three limit cycle window, which for t
unperturbed case starts ata511A8, is triplicated, and its
stability range is extended to values less than 11A8, as has
the range ofa0 , for which limit cycles with periods that are
multiples of three have been extended.

Figure 2 answers the question of whether a perturba
can decrease the overall chaos for a nonlinear system ov
broad range of parameters. It shows the effect of perturb
the logistic map with aT52 and with aT53 perturbation
with 3.5,a0,4 and 0,a1,0.2 for two different phasesw.
For T52 and w50, the percentage of periodic cases w
increased from 22.3% to 24.9% over this range ofa0 anda1 .
TheT52,w5p/3 case decreases the periodic solutions fr
n
r a
g

s

22.3% to 12.8%. A difference due to phase can also be s
in theT53 cases. Forw5p/2, the number of periodic case
is increased to 26.9%, while forw50, the number is de-
creased to 16.2%. The effect of the phasew is also mani-
fested by the loss of the ‘‘middle periodic ray’’ whenw
50, because the logistic map is only being perturbed w
two different perturbation amplitudes:a1 and 2a1/2. Pat-
terns similar to those in Fig. 2 were first examined
Markus, who varied the logistic equation parameter acco
ing to various symbolic sequences@55#.

The result of perturbing the logistic map with a non-UP
period is shown in Fig. 3. The only ‘‘off-resonance’’ pertu
bations that can be applied are those with irrational peri
to the limits of computational precision. Figure 3 shows th
a maximally irrational period ofT531(A521)/2 ~the
golden mean above 3! with a150.05 destroys the periodic
FIG. 3. Effect on the logistic map of aT53
1(A521)/2 perturbation fora150.05; all peri-
odic windows are destroyed.
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FIG. 4. The Lorenz attractor and its first si
UPO’s.
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windows. The opening of periodic windows with resona
perturbations and their closing with nonresonant pertur
tions is a general feature of all the systems studied here

III. THE LORENZ EQUATIONS

The Lorenz equations@56# specify a three-dimensiona
flow given by the following equations:

ẋ5s~y2x!,

ẋ5x~r 2z!2y, ~6!

ż5xy2bz.

Here the parameterss516,r 545.92, andb54 were used.
In this and the remaining cases, all differential equatio
were integrated with a fourth-order Runge-Kutta meth
with a fixed step size, except where noted. Lorenz deri
these equations to model heat convection in a Be´nard con-
vection cell, which consists of two horizontal, infinite plat
with a temperature difference ofDT across the fluid betwee
the plates. After truncation of the fluid equations and ren
malization of several of the fluid quantities, the parameter
is proportional to the temperature difference. Thus, in
spirit of perturbing a physically accessible system parame
the parameter r was perturbed according tor 5r 0
1r 1 sin(vt). Note that a fixed-point solution is not possib
unlessv50 or r 150.

The perturbation frequency is chosen by identifying t
UPO’s using a slight variation of the method of Lathrop a
Kostelich @57#. In their work, UPO’s are identified from a
time series by reconstructing the attractor with time del
and then measuring the number of time steps it takes for
trajectory to return to within a distance« of any given point.
A suitable value for« is found to be roughly a factor of 2
larger than the average state-space distance between su
sive points on the reconstructed attractor. If a given star
point on the trajectory returns to within« of itself after m
steps, it is called an (m,«) recurrence point. When the$m%
for all (m,«) recurrent points are histogrammed, the d
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cluster in integer multiples ofDm. When this method was
applied to the Lorenz equations, it was found thatDm
512469, which for a time step of 1/256 corresponds to
temporal value of 0.4860.04. This method can also be ap
plied to the three state-space variables (x,y,z) to find (m,«)
recurrent points. This method givesDm5238610, which
for a time step of 1/512 corresponds to 0.4660.02, which is
in excellent agreement with the Lathrop-Kostelich metho
The UPO’s found using all three state-space variables bea
striking resemblance to the Lorenz attractor, as can be s
in Fig. 4. Note that for any given periodT, there areT21
distinct UPO’s for the Lorenz attractor. Figure 5 shows th
(m,«) histogram obtained using this method.

A third method to find UPO’s was used to verify the
previous two results. Since the Lorenz attractor is low d
mensional (DKY>2.07 for these parameters!, a Poincare´
map can be used to determine the periods of the UPO’s. B
of the values of the state-space variablesx andf (5vt) are
recorded when the attractor trajectory crosses the planz
5r 21, which contains two of the fixed points of the unper
turbed attractor. If the elements of the time series forx that

FIG. 5. Histogram of the number of UPO’s with recurrence tim
m for the Lorenz equations. The vertical lines are spaced atDm
5238.
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PRE 59 5317CONTROLLING CHAOS IN LOW- AND HIGH- . . .
results are denoted asxn , the intersection of the 45° line
with plots of xn1k vs xn denotes UPO’s of periodk/2, and
the temporal value of this period can be obtained fromf.
This analysis gave a value of 0.4660.03, which agrees wel
with the values previously obtained.

To understand the stabilizing effect of periodic perturb
tions on the Lorenz equations, numerous perturbation
quencies and amplitudes were examined. Frequencies r
ing from 0.5 to 5.0 Hz were used, which corresponds to j
less than the frequency of a period-four UPO to four tim
the frequency of a period-two UPO. Amplitudes up to 66
of r 0 were used. Fors and b held constant as prescribe
above, the Lorenz equations are chaotic fromr'31.375 to
r .100. Thus, the largest amplitude perturbationsr 1
530.25) bring the perturbed parameterr 545.92
1r 1 sin(vt) into a periodic regime for part of the drive pe
riod. However, many stabilizing amplitudes were too sm
to do this. Combinations of driving amplituder 1 and fre-
quency f 5v/2p were raster scanned, and the results w
classified according to the Lyapunov dimension of the res
ing perturbed attractor in Fig. 6. The dominant feature i
reduction in dimension at frequencies corresponding to
UPO’s and their multiples. Note that the dimension of t
system immediately increased by 1.0 when arbitrarily sm
perturbationsr 1 were applied.

Figure 7 shows that the behavior ofDKY is replicated with
the LLE, which is computationally easier to determine
general. Figure 8 shows some of the UPO’s that were st
lized with small perturbations. The fluctuation amplitud
are decreased for cases controlled with small perturbati
since the attractor is confined to a smaller region of s
space. For large perturbations, however, the fluctuation
plitudes increased, since the attractor size scales roughly
early with r.

One surprising discovery was that the frequency of
perturbation that stabilizes a given UPO in the Lorenz attr
tor is rarely the natural frequency of that UPO. For examp
a period-two UPO with a natural frequency of 1.1 Hz
commonly stabilized by a perturbation frequency of;2.2
Hz. This result is typical in that the smallest frequency u
ally required to stabilize a given UPO is twice its natu

FIG. 6. Results of perturbing the Lorenz equations with vario
perturbations of frequencyf and amplituder 1 . Arrows denote vari-
ous UPO frequencies~i.e., T2 corresponds to a period-two UPO!
and their harmonics. Black→ periodic, dark gray→ 2,DKY,3,
and light gray→ 3,DKY,4.
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frequency or more, and it may occur because the period-
UPO for the Lorenz equations does not exist. However,
stabilizedT53 UPO in the upper right-hand corner of Fig.
provides one counterexample, since a period-three UPO
stabilized by a frequency that is closest to that of the non
istent period-one UPO. Another typical occurrence is tha
given perturbation frequency may stabilize several differ
UPO’s. Figure 9 shows four such cases in which a peri
one frequency aliases a period-four and period-eight UPO
period-two frequency aliases a period-sixteen UPO, a
twice a period-one frequency aliases a period-twelve UPO
is also interesting that the width of effective perturbations
frequency gets narrower as higher-order UPO’s are st
lized, and that these higher-order UPO’s require larger p
turbation amplitudes to stabilize them. Once any of t
UPO’s are stabilized, however, they remain controlled for
long as the perturbation is on.

Another unanticipated result is that as the amplitude
the perturbation is increased at a fixed frequency, the sys
can pass through regimes of control and chaos. Control w
small perturbations happens only near natural frequencie
various UPO’s, but as the amplitude is increased, chaotic

s
FIG. 7. Largest Lyapunov exponent for the perturbed Lore

equations. Black corresponds to a LLE of 0; lighter colors indic
higher LLE’s. The arrows indicate the same frequencies as
Fig. 6.

FIG. 8. Various stabilized UPO’s for the perturbed Lorenz eq
tions. clockwise, from upper left corner: period 2, (r 1 , f )
5(4,2.412); period 3, (r 1 , f )5(3.375,2.072); period 6, (r 1 , f )
5(23,0.712); period 4, (r 1 , f )5(13,1.108).
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5318 PRE 59K. A. MIRUS AND J. C. SPROTT
periodic windows appear. The second band of periodicity~in
the region 1, f ,2.5 andr 1.15 of Fig. 6! corresponds to a
situation where the amplitude of the drive is so great that
system is mode locked to the perturbation. In this and sim
cases, the limit cycles no longer resemble any unpertur
UPO but are akin to the top two plots in Fig. 10. This i
creasing distortion of the underlying attractor with larg
perturbations is a common effect even for frequencies
stabilize a natural UPO.

The choice of initial condition can lead to differing re
sults, as seen in the bottom two plots of Fig. 10. Althou
the specific details of a trajectory like this can be differe
for different initial conditions, no cases were found in whi
different initial conditions led to totally different behavio
such as the stabilization of different UPO’s.

In addition to these results, some long-period limit cyc
and unique strange attractors were also seen. Freque
when a perturbation is applied, a chaotic attractor resu
except that the chaos is limited to a thin band around so

FIG. 9. Some ‘‘aliased’’ UPO’s. Clockwise, from upper le
corner: period 4, (r 1 , f )5(4.25,2.204); period 8, (r 1 , f )
5(4.125,2.156); period 12, (r 1 , f )5(18.625,4.624); period 16
(r 1 , f )5(22.750,0.992).

FIG. 10. Top two plots: limit cycle achieved through mode loc
ing; (r 1 , f )5(25,2.176) ~left!, (r 1 , f )5(22,1.2) ~right!. Bottom
two plots: slightly different period-two IUPO’s, both stabilized wit
(r 1 , f )5(4.75,2.328) but different initial conditions
(x0 ,y0 ,z0 ,f0)5(1,1,1,0) ~left!; (x0 ,y0 ,z0 ,f0)5(1,1,10,0)
~right!.
e
r

ed

r
at

h
t

s
tly,
s,
e

UPO. This effect was termed ‘‘noisy periodicity’’ by Loren
@58#, and if there is room for some tolerance in the period
solution that is sought, these solutions may suffice.

As with the logistic equation, small periodic perturbatio
stabilize the Lorenz equations when applied at frequen
near the natural frequencies of UPO’s. Once a limit cycle
achieved, it remains stable for as long as the perturbatio
on. Large perturbations stabilize the Lorenz equations
mode locking~stabilizing a highly distorted UPO!. It should
be noted that Singeet al. @59# were successful at controlling
the Lorenz equations both numerically and experimentally
a system known as a thermal convection loop. Their met
was simpler than the OGY method in that they used a sim
proportional feedback scheme. The advantage of the me
presented here is that it is even simpler because it invo
no feedback whatsoever. A disadvantage of this metho
that it is impossible to stabilize fixed points in the chao
system.

IV. THE RÖ SSLER EQUATIONS

The Rössler equations@60# are

ẋ52~y1z!,

ẏ5x1ay, ~7!

ż5b1z~x2c!.

Here, the parametersa5b50.2 andc55.7 were used.
Rössler derived these equations as a simpler example
the Lorenz equations in the sense that they have only
quadratic nonlinearity, and the flow they generate has on
single spiral~see the attractor in the upper left of Fig. 12!.
See Sprott@61–63# for even simpler examples of chaot
flows. Although the Ro¨ssler equations have a simpler for
than the Lorenz equations, they were found to be more
ficult to control due to the presence of a dominant frequen
Since the Ro¨ssler equations and their parameters have
physical significance, the parameterc was chosen arbitrarily
to be perturbed:c5c01c1 sin(vt). Analysis of 500 UPO’s
identified using the (m,«) method on all three state-spac
variables determined thatDm5148864, which for a time
step of 1/256 corresponds to 5.8160.09. A Poincare´ analysis
of the UPO’s yielded a similar result of 5.8660.02.

To assess the effect of periodic perturbations on
Rössler equations, perturbation amplitudes and frequen
in the range 0,c1,3.1 and 0.05, f ,0.4 were examined
corresponding to amplitudes up to 54% ofc0 and frequencies
of just less than that of a period-three UPO to more th
twice the frequency of a period-one UPO. Fora andb held
constant as prescribed above, the Ro¨ssler equations are cha
otic from c'4.20 to c.13. Thus, perturbation amplitude
greater thanc151.5 bring the perturbed parameterc55.7
1c1 sin(vt) into a periodic regime for part of the drive pe
riod. However, as was the case with the perturbed Lor
equations, many stabilizing amplitudes were smaller than
c151.5 limit. Figure 11 shows that perturbations near t
UPO and its multiples decrease the dimension of the att
tor. Figure 12 shows some of the UPO’s that were stabiliz
with small perturbations, as well as a noisy limit cycle.
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PRE 59 5319CONTROLLING CHAOS IN LOW- AND HIGH- . . .
V. COUPLED LORENZ EQUATIONS

Coupled Lorenz models are lattices with each site oc
pied by a set of Lorenz equations. Lawandyet al. @64# have
studied pairs of coupled Lorenz systems in order to find
improved stability regime for a single-mode laser by co
pling two lasers together. Malkus@65# and Yorke and Yorke
@66# showed that the Lorenz equations, which were deriv
as an approximation of the Raleigh-Be´nard system, exactly
describe the dynamics of a thermal convection loop. A th
mal convection loop, or thermosyphon, consists of a nar
diameter pipe containing fluid, which is bent into a toru
stood upright in a vertical plane, heated uniformly over t
bottom half, and cooled uniformly over the top half. Dav

FIG. 11. Results of perturbing the Ro¨ssler equations. The arrow
show the frequencies of various UPO’s and their harmon
Black→ periodic, dark gray→ 2,DKY,3, and light gray→ 3
,DKY,4.
-

n
-

d

r-
w
,
e

and Roppo@67# studied the effect of thermally coupling tw
thermosyphons, which is equivalent to studying two adjac
rolls in a Bénard convection layer. Jackson and Kodoge
giou @68# extended this work by studying long~up to 128
lattice sites! periodic chains of thermosyphons. They i
cluded both viscous and thermal coupling between adjac
vortices in their model equations but only examined the c
with viscous coupling. Lorenz@69# also studied the effect o
coupling seven Lorenz-like systems together to illustrate t
global weather systems most likely do not possess lo
dimensional attractors. Here the coupled Lorenz cell mo
studied by jackson and Kodogeorgiou is considered:

ẋi5s~yi2xi !2m~xi 111xi 2112xi !,

ẏi52yi2xizi1rxi , ~8!

żi5xiyi2bzi .

Here,i denotes the lattice site (i 50,1,...,N21) andm is the
viscous coupling constant. Each lattice site is coupled to
neighbor on each side. This system is taken to have peri
boundary conditions:xN5x0 , yN5y0 , zN5z0 . The param-
eters used here weres510, m53, r 534, b51, and N
532. In the thermosyphon paradigm,x corresponds to the
average fluid velocity around the loop,y corresponds to the
temperature difference between points at ‘‘12 o’clock’’ a
‘‘6 o’clock,’’ and z corresponds to the horizontal temperatu
difference. The authors computed that the system has st
fixed points forr ,r c517.5, and it was found that the sys
tem exhibits chaotic behavior forr down to about 23.

Computing the Lyapunov exponent is computationally
tensive for high-dimensional chaotic systems, since
memory and time required both scale asN2. For this reason,
a lattice with onlyN532 sites~and thus 3332596 vari-

.

d

FIG. 12. Various attractors
arising from the perturbed Ro¨ssler
equations: The unperturbe
Rössler attractor; a noisyT53
limit cycle, (c1 , f )
5(1.600,0.182); a T52 limit
cycle, (c1 , f )5(1.200,0.250); a
T53 limit cycle, (c1 , f )
5(0.100,0.114); a T54 limit
cycle, (c1 , f )5(0.750,0.272); a
T55 limit cycle, (c1 , f )
5(0.450,0.106); a T56 limit
cycle, (c1 , f )5(0.100,0.286); a
T57 limit cycle, (c1 , f )
5(1.050,0.356); a T58 limit
cycle, (c1 , f )5(1.050,0.168).



a-
o
s
fo
er
96
e
es

te
th
h
ce
er

-
io
ud
n
de

ys
b
o
in

he
nc

O
ys
es
io

(

re
o

th
a

in-
with
are

s of
io-
is

e-
one
ak
eak
ne
ics
the
the
to
he
in

er-
le
n.
-
-

con-

er-
h-

con-
cal

rd-

the
st to
ol-
lo-

ion.

tial

ev
LE
y

of
le.

5320 PRE 59K. A. MIRUS AND J. C. SPROTT
ables! was considered, and a first-order ‘‘leapfrog’’ integr
tion scheme was used. It was found that great care had t
used in choosing the integration time step so that the cla
cal Gram-Schmit orthonormalization technique used
computing the Lyapunov exponent spectrum was num
cally stable. In the absence of a perturbation, this
dimensional system has an attractor with a Lyapunov dim
sion of 65.8. The uncoupled Lorenz equations for th
parameters were measured to haveDKY52.0660.005,
which yields an expected dimension for the coupled sys
of 3232.06565.9. This value is in good agreement wi
what was measured for the coupled system, althoug
would not have been surprising if the coupling had redu
the dimension. As with the single Lorenz model, the p
turbed parameter wasr 5r 01r 1 sin(vt). A reasonably accu-
rate calculation ofDKY for even this modest lattice size re
quires the order of a day of computation for one perturbat
case. Thus, there are no extensive perturbation amplit
frequency scans as before, but Fig. 13 shows the Lyapu
dimension and LLE as a function of perturbation amplitu
for seven different perturbation frequencies.

The perturbation frequencies were once again chosen
identifying the frequencies of the UPO’s for the coupled s
tem. The period of the period-one UPO was found to
1.01460.050. Remarkably, a small perturbation amplitude
r 154, which is only 9% the unperturbed value, resulted
limit-cycle behavior for a perturbation frequency equal to t
frequency of a period-one UPO. Perturbations of freque
f 52.028~which is twice the period-one UPO frequency! and
f 51.595 ~which is about three times the period-two UP
frequency! significantly decrease the dimension of the s
tem. Even if a perturbation does not produce limit cycl
drastically decreasing the dimension of a high dimens
system is a significant step toward controlling it@70#. Pertur-
bations of frequency corresponding to a period-twof
50.507), a period-three (f 50.338), and a period-four UPO
( f 50.254) decrease the dimension of the system with
spectively larger perturbations. A perturbation frequency
f 52.412, which was successful at eliminating chaos for
single Lorenz system, required a large amplitude to decre

FIG. 13. Results of perturbing a coupled Lorenz system as
denced by the Lyapunov dimension and the magnitude of the L
The solid horizontal lines indicate values for the unperturbed s
tem. Note that a perturbation frequencyf 51.014 produces a limit
cycle for r 154.0, 10.0, and 12.0.
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the dimension of the system. None of the frequencies
creased the dimension by more than 1, as has been seen
perturbed coupled logistic equations. Frequencies that
further off-resonance may excite additional, latent degree
freedom. This case could have important applications in b
logical and other high-dimensional systems, where it
sometimes desirous to ‘‘uncontrol’’ chaos@71#.

An important point in choosing the perturbation fr
quency for this case was that the frequency of the period-
UPO is roughly half the frequency of the power spectral pe
of any single state-space variable. The power spectral p
occurs at roughly 2 Hz, which corresponds to the period-o
UPO for a single Lorenz attractor. Thus, the global dynam
of the coupled system seem to evolve more slowly than
fluctuations in any state-space variable. This implies that
power spectral peak frequency is misleading when trying
predict a useful perturbation frequency for this system. T
slower global dynamics are shown in spatiotemporal plots
Fig. 14, which shows the value ofxi , which corresponds to
the average fluid velocity for each site versus time. The p
turbed case in Fig. 14 shows the period-two limit cyc
achieved with the small-amplitude period-one perturbatio

This result is particularly encouraging in view of its sim
plicity when compared to other work in controlling high
dimensional systems. The earliest method advanced for
trolling high-dimensional chaotic systems@7# was a straight
application of the OGY method, and it proved to be cumb
some in application. Recent methods of controlling hig
dimensional chaotic systems have focused on arrays of
trollers that use an OGY-like method based only on lo
measurements@72#, delayed oscillating feedback@73#, or lin-
ear control laws optimized by placing the controllers acco
ing to the symmetry of the system@74,75#. While these
methods are effective, the method presented here has
advantage that no feedback is required, in sharp contra
feedback applied by a potentially large number of contr
lers. The only requirement is that there exists a suitable g
bal parameter accessible for applying a periodic perturbat

VI. THE YOSHIDA EQUATIONS

The Yoshida equations are a set of ordinary differen
equations derived by Yoshidaet al. @76# from a 1D ~i.e.,

i-
.

s-

FIG. 14. Spatiotemporal plot ofxi vs time for the coupled Lo-
renz equations. Left: unperturbed; right: perturbation amplitude
(r 1 , f )5(4,1.014). The perturbed case is a period-two limit cyc
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functions have a radial dependence only! set of partial dif-
ferential equations meant to model the nonlinear interacti
of magnetic islands in a low-beta tokamak plasma in a
lindrical approximation. The method for reducing th
~infinite-dimensional! set of PDE’s to ODE’s involves the
application of the force-free condition¹3B5lB to approxi-
mate the structure of the magnetic fieldB5B01b. The non-
linear interactions are represented by fluctuations in the
dial magnetic field (br), the poloidal magnetic field (bu),
and the normalized parallel current density~l!.

The force-free condition converts PDE’s to ODE’s by r
ducing the action of spatial derivatives to the multiplicati
by a scalar functionl. The justification for the force-free
structure of the field is that the intensity growth rate is s
ficiently small that the current perpendicular to the magne
field is negligible, which is indeed the case for a tokam
plasma in which the parallel current is significantly larg
than any perpendicular currents. In the case of a rever
field pinch plasma confined by a perfectly conducting tor
dal shell, the relaxed state is defined by the force-free c
dition @77#.

By combining the time evolution of the magnetic fiel
the time evolution of the magnetic helicity, and a hype
resistivity added to Ohm’s law to describe the effect of t
nonlinear coupling of the tearing modes, Yoshidaet al. ob-
tained the following set of three ODE’s for each interacti
island in a plasma:

ḃr ,n52
h

m0
ln

2br ,n2Vlnbu,n ,

ḃu,n52
h

m0
ln

2bu,n1Vlnbr ,n

1
C

B0

br ,n111bu,n11
2 2~br ,n21

2 1bu,n21
2 !

Dn
~9!

3
ln111ln2122ln

Dn
2 ,

l̇n5ln
2F C

2B0
2 ~br ,n

2 1bu,n
2 !S ln111ln2122ln

Dn
2 D 1

Eh

B0
G .

Here, br ,n , bu,n , and ln are, respectively, the radial mag
netic field fluctuation, the poloidal magnetic field fluctuatio
and the parallel current density at a radial grid point index
by n. h is the resistivity,m0 is the permeability of free space
V is the Hall velocity,C is a constant proportional to th
tearing mode growth rate,B0 is the equilibrium axial mag-
netic field, Dn is the distance between then21 andn11
grid points, andEh is the axial electric field used to drive th
plasma current. The parameterEh was chosen to be per
turbed, since it is an accessible experimental parameter.

Yoshida et al. used these equations to model equa
spaced two-mode interactions (N52) in a tokamak plasma
This two-mode model was successfully controlled with pe
odic perturbations, but a three-mode model was sought
would describe an MST-like plasma@49# more accurately.

Modifying the Yoshida equations to model MST involve
changing some of the boundary conditions, and accoun
for the fact that bispectral analysis of experimental data
s
-

a-

-
c
k
r
d-
-
n-

-

,
d

-
at

g
-

veals a three-wave coupling process, whereby two mo
couple to a third withk35k11k2 @78#. In MST, magnetic
fluctuations are dominated by a fewm51 modes; namely
(m,n)5(1,6) and~1,7!. These two modes couple strongly
the ~0,1! and ~2,13! modes. The~0,1! mode is much more
dominant than the~2,13! mode, but it is located at the reve
sal surface of the plasma, where the toroidal magnetic fi
vanishes. This violates the assumption of Yoshidaet al. that
the toroidal field is nearly constant across the plasma. H
ever, the~2,13! mode lies between the~1,6! and~1,7! modes,
which means the toroidal field is nearly constant across th
three modes. Thus the~1,6!, ~2,13!, and ~1,7! modes were
chosen to model the magnetic fluctuations in the MST. Th
modes are not equally spaced across the plasma. The~1,6!,
~2,13!, and ~1,7! modes reside approximately atr /a50.3,
0.36, and 0.42, respectively. Incorporation of these mod
cations results in the following nine equations for thisN
53 model:

ẋ15a1x1x3
21a2x2x3 ,

ẋ25a1x2x3
22a2x1x31a3~x4

21x5
2!~a422x31x6!,

ẋ35x3
2@a5~x1

21x2
2!~a422x31x6!1a6#,

ẋ45a1x4x6
21a2x5x6 ,

ẋ55a1x5x6
22a2x4x610.833a3~x7

21x8
22x1

22x2
2!

3~x322x61x9!, ~10!

ẋ65x6
2@a5~x4

21x5
2!~x322x61x9!1a6#,

ẋ75a1x7x9
21a2x8x9 ,

ẋ85a1x8x9
22a2x7x910.714a3~a72x4

22x5
2!~x622x9!,

ẋ95x9
2@a5~x7

21x8
2!~x622x9!1a6#.

Here, the parametera6 was perturbed, since it corre
sponds to the axial electric fieldEh . Parameters chosen t
give the best match between the autocorrelation function
ẋ8 and a single poloidal field pick-up coil on the wall o
MST were $ai%5$20.578 13,21.7339, 9.781 95, 0.668 11
5.465 45, 0.661 26, 3.639 98%, with time in units of the digi-
tization time of 5ms. A comparison of the time series fo
MST data and the model equations is shown in Fig. 15. T
period-one UPO had a temporal period of 15.860.5. This
corresponds to 7962.5 ms in the MST, which is a frequency
of 12.760.4 kHz. Like the coupled Lorenz equations, th
period-one UPO has a frequency significantly lower than
peak power spectral frequency of 40 kHz. Figure 16 sho
that the most effective controlling frequencies are the U
frequencies and their harmonics rather than the peak po
spectral frequency. An analysis of the electron heat trans
due to radial magnetic field fluctuations in a Rechest
Rosenbluth model@79# showed only a slight~;10%! reduc-
tion for a perturbation at four times the period-one UP
frequency.
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VII. A NEURAL NETWORK MODEL FOR MST

An artificial neural network model can also be used
study prospects for controlling fluctuations in MST. The ne
ral net chosen hasN neurons, with the input of each neuro
consisting of the superposition of the weighted sum of
output of all the neurons~including itself!. The neurons are
represented by hyperbolic tangent squashing functions
provide the nonlinearity necessary for chaos:

xi~ t11!5tanhS s(
j 51

N

Wi j xj~ t !D . ~11!

The parameters is a scale factor on the weights and
initially chosen ass51. TheN3N matrix of weightsWi j is

FIG. 15. A comparison of the measured poloidal field fluctu
tions at the wall of MST and from the outermost magnetic island
the N53 Yoshida model. The bottom plot shows the autocorre
tion function for the two signals.

FIG. 16. Effect of perturbing the chaotic Yoshida equatio
modeling the MST The unperturbed parameter value wasa65Eh1

>0.66125. Black indicates limit cycle cases. Dark gray→ 2
,DKY,3; light gray→ 3,DKY,4; white→ 4,DKY,5. The
unperturbed case has a dimension ofDKY54.1. The dark arrows
indicate the frequency of the period-one UPO and its harmon
The light gray arrows indicate the power spectral peak freque
and its harmonic.
-

e

at

adjusted by a variant of simulated annealing so that theN
outputs of the neuronsxi(t11) at T successive time step
fits anN3T matrix of training points obtained from an arra
of N poloidal field magnetic pickup coils~measuringdBP /dt
at the wall of MST!. The training set hasN564 and T
5255, with a sample time of 5ms, and was rescaled so th
the data fall in the range21 to 11 as shown in Fig. 17. The
dominant feature is a rotating resistive tearing mode wit
frequency of about 14 kHz. After training the net for seve
days of 200 MHz CPU time, the output of the network ca
tured some sense of the rotating mode seen in the exp
ment, with a frequency of about 11 kHz. The model was
chaotic, however, as evidenced by calculation of the LL
which is indistinguishable from zero. To obtain a chao
solution, the parameters was increased to 1.2, giving th
result in Fig. 18. This case has a largest Lyapunov expon
~basee! of 0.028/iteration. The rotating oscillation persists
a frequency of about 10 kHz. A perturbations5s0
1s1 sin(2pft) with s051.2 was added, and the perturbatio

-
n
-

s.
y

FIG. 17. Spatiotemporal plot of poloidal field fluctuations at t
wall of MST. The dominant feature is a rotating resistive teari
mode with a frequency of about 14 kHz.

FIG. 18. Spatiotemporal plot of a neural network trained
model MST poloidal field fluctuations with the parameters in-
creased by 20% to yield chaotic solutions.
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amplitude was scanned over the range 0,s1,s0 , while the
frequency was scanned over the range 1, f ,100 kHz. The
LLE was calculated for each combination ofs1 and f. The
result is plotted in Fig. 19 with a gray scale in which th
darkest color indicates an exponent of zero~chaos com-
pletely suppressed! and the lightest color indicates an e
hancement of the chaos~approximate doubling of the
Lyapunov exponent!.

The general result is a decrease in chaos for increa
perturbation amplitude, with certain frequencies such as
kHz being especially effective. The striations in the upp
left are a numerical artifact caused by truncating the ca
lation at a time~500 iterations! that is not an integer numbe
of perturbations cycles. Since the Lyapunov exponent ge
ally increases withs, chaos is enhanced when the final val
of s is positive and diminished when it is negative for lo
perturbation frequencies.

VIII. PERIODIC PERTURBATIONS APPLIED TO MST

Periodic radial magnetic field perturbations~of a few tens
of gauss! were applied to MST plasmas by driving a set

FIG. 19. Result of perturbing the chaotic MST neutral n
model. Black indicates limit cycle behavior. White indicates t
LLE was approximately doubled.
tt

E

R

ev

A.
ng
3
r
-

r-

n51 and 6 coil sets that pierced the toroidal gap. Calcu
tions from magnetic fluctuation data show that the domin
UPO’s for MST have a frequency of about 7 kHz, which
about half the peak power spectral frequency of the tea
modes. This result of the UPO having a slower time sc
than is indicated by power spectra is consistent with num
cal results for high-dimensional systems.

There is no evidence that the small periodic perturbati
applied decreased the correlation dimension of the sys
(D>15 @80#! to a level that could be measured. Howev
this result does not mean that they had no effect; rather
the effect could not be adequately diagnosed within the l
its of the finite amount of noisy data. Higher-power expe
ments with better-tuned perturbations in the future may sh
positive effects, but it is uncertain if the perturbation can
properly tuned for each plasma shot, since UPO anal
indicated slight differences in the peak of the (m,«) histo-
gram from shot to shot. Also, numerical results suggest
the perturbation frequency has to be very close to the
quency of the UPO, and this frequency may change so
what during and between shots.

IX. SUMMARY

Periodic perturbations have been applied to several c
otic numerical systems by modulating a system paramete
every case, the optimum frequency to obtain control with
minimum perturbation amplitude was found to be the f
quency of the UPO’s obtained from the dynamical fluctu
tions of the system. One interesting result was that plots
controlled cases on a perturbation frequency-amplitude p
are dissimilar to the Arnold tongues@54,81# usually seen in
systems that undergo a quasiperiodic route to chaos.
difference has been observed in at least one other experim
@43#. Also, a given frequency can stabilize more than o
UPO. Another interesting discovery was that UPO’s c
have vastly different time scales than the fluctuations in
given state-space variable, which means that the best
quencies to perturb are not always those with the m
power.
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