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Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations
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The effect of applying a periodic perturbation to an accessible parameter of various chaotic systems is
examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable
periodic orbits of the chaotic systems can result in limit cycles for relatively small perturbations. Such pertur-
bations can also control or significantly reduce the dimension of high-dimensional systems. Initial application
to the control of fluctuations in a prototypical magnetic fusion plasma device will be reviewed.
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PACS numbes): 05.45-a, 47.52+j, 52.35.Mw, 52.55.Hc

[. INTRODUCTION rational multiples of periodic drive frequencies that initiated
the chaos[36—49, the natural frequencies in a period-
Since the pioneering work of Ott, Grebogi, and Yorke doubling route to chadgl6], or frequencies corresponding to
(OGY) in controlling chaotic system$l], several other peaks in the power spectruf@7,48. However, it will be
methods for controlling chad@—18| have evolved based on shown that these predictors are not always reliable. Rather,
the principle that relatively small perturbations to a chaoticthe optimum perturbation frequencies correspond to rational
System can stabilize unstable periodic ortﬂtﬂDO’S) pos- multiples of the frequenCieS of UPQO’s embedded in the at-
sessed by that system. Such control schemes are attractiffactor. These UPO's can be extracted directly from the time
for two reasons. First, since chaotic systems possess an infiefies of any state-space variable, and thus no model for the
nite number of unstable periodic orbits, a single physicaBystem dynamics is required to predict optimum perturbation
system can exhibit a wide variety of controlled behaviors frequencies.
Second, since the schemes are based on very general prop-In this study, the Lyapunov dimension is computed to
erties of chaotic dynamics, they are applicable to a widedetermine the effect of the applied perturbations. The
variety of seemingly unrelated physical systems. ControKaplan-Yorke conjecture[50-53 states that for an
methods inspired by the OGY method tend to be “closed-N-dimensional system, the Lyapunov dimension, which is an
loop™ control systems in which the applied perturbation is @Pproximation to the information dimension, can be com-
determined by the state of the system. There also exigtuted from the spectrum of Lyapunov exponemts,(.. Ay)
“open-loop” control system$19] in which the applied per- when they are ordered from most positive to most negative.
turbation is independent of the system’s state; that is, there iEhe first exponent in the spectrum,;, or the largest
no feedback loop. Such control schemes involved modulat-yapunov exponenfLLE), can be used by itself to diagnose
ing the chaotic systems with randd20—25, chaotic[26— whether a system is chaotic or not. However, an applied
28], or periodic signal§29—44. perturbation may decrease the dimension of a system without
Here the open-loop control scheme of applying a periodidnaking the system periodic. The Lyapunov dimension pro-
perturbation to an accessible system parameter is examinddfles a means of diagnosing this effect on high-dimensional
for several different chaotic systems of increasing dimensiofiumerical systems, which would be impossible with more
and realism. Previous work has focused on the effect of &aditional time-series analysis. Note that applying a periodic
single periodic perturbation to a single system. Here, wePerturbation increases the dimension of the system by one,
demonstrate the general effects of periodic perturbations oncause an extra state-space variable is added to the system.
wide variety of systems. The numerical systems that havd he Lyapunov exponent associated with this new state-space
been examined are the logistic equati@none-dimensional Vvariable is always zero, because it causes neither exponential
quadratic map the Lorenz equationga three-dimensional €Xpansion nor contraction. It is not necessarily obvious that
quadratic flow, the Rwsler equations(another three- adding an external frequency to a system with an already
dimensional quadratic flowa coupled Lorenz cell mod¢h  broadband frequency spectrum will decrease its chaotic be-
96-dimensional polynomial floy the Yoshida equations, havior, especially since three incommensurate frequencies
which a model magnetic fluctuations in a plasma fusion decan generally lead to cha¢§3].
vice (a nine-dimensional polynomial flgwand a neural net
model for a fluctuating plasm@ 64-dimensional nonlinear IIl. THE LOGISTIC EQUATION
map. Initial attempts to control magnetic fluctuations in the
Madison Symmetric TorugMST) [49] will also be men-
tioned.
In applying these perturbations, drive frequencies were Xos1=aX,(1—Xp). (1)
sought for which a small amplitude would suffice to decrease
the chaos in the system over a range of its parameters. Préhe controlling periodic perturbation was taken as a,
vious work found successful perturbation frequencies to beta; cos(2m/T+¢).

The logistic equation is a well-known one-dimensional
map with the following form:
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FIG. 1. Logistic map bifurcation diagram for
a T=3 perturbation witha;=0.05 ande= 7/2,
showing the unperturbed bifurcation diagram, the
perturbed map, its three composed maps, and the
Lyapunov exponent.

To compute the Lyapunov exponent spectrum for the per- Sincel, is identically zero, calculation of; suffices to
turbed map, one can make it autonomous by splitting thejuantify the chaos. Previous analytic wg#0—33 has lifted
map into two maps, with “time” represented by the secondthe nonautonomy by examining composite maps formed
map. Lettingx,(1)and x,(2) denote the two state-space from the pth iterate maps for a periopperturbation.
variables at iteratiom, the maps take the following form: The choice of the period of the perturbation is simple,

since the logistic map has unstable orbits of all integer peri-

_ _ ods, provided the parametaris large enough. In fact, there
Xn+1(1) = {80+ a3 O 2mXn(2)/ T+ @] Xn(1)[1 X“(l)]z' are 2 unstable periodic orbits for any UPO of periodicty
Xps1(2)=%,(2)+ 1. (2) whena=4 [54]. Most of the literature has focused on low-

period perturbations. Here we will illustrate that control can
An explicit computation of the Jacobian for these two be achieved for a period-three perturbation and that a pertur-
maps shows that the two Lyapunov exponents are given byation that does not correspond to any UPO can obliterate all
periodic windows.
A period-three drive results in the following two equiva-

27X, (2) lent autonomous systems:
ag+acoy —F—+o

1 N
A= lim = > In

N—o n=1

><[1—2Xn(1)]‘,
3 Xn+1(1)={ag+a; cog (27/3)Xn(2) + @1} Xn(1)[1—Xn(1)],

)\Z_l\lllinoc N & Inja]=o0. Xn1(2)=X,(2)+1, 4

X1 1(1)= = AAL AL Xn(1) B+ AAAT LAY, X0 (i)
—2AAY AT (A 1+ DX (D)8 2AAY, (A2 H(2A 1+ 3)X,(1)°
—AAZ AL (AL A2+ BA LA AL+ D) X(1)
+AAZ AL (AL AL+ AL 1)XG(1)2

—AA A (AL A 2 AL F DX (D)2 AAL A X0(1), (5
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FIG. 2. Summary of effects oT=2 and 3
perturbations on the logistic map over a range of
nominal parameter values, and perturbations
amplitudesa, for different phases. Clockwise,
from upper left: T=2, ¢=0; T=2, o=7/3; T
=3, ¢=m/2; T=3, ¢=0. Black indicates peri-
odic solutions; white chaotic solutions, and gray
unbounded solutions.

where theA; are cyclic on(1,2,3 and A;=ap+a; cosfp), 22.3% to 12.8%. A difference due to phase can also be seen
A,=ag+a,; cos(2r/3+ ¢), and Az=ay+a,; cos(4m/3+ ¢). in the T=3 cases. Fop= /2, the number of periodic cases
Figure 1 shows the bifurcation diagram for the=3 case. In  is increased to 26.9%, while fop=0, the number is de-
this case, the period-three limit cycle window, which for thecreased to 16.2%. The effect of the phasés also mani-
unperturbed case starts a1+ /8, is triplicated, and its fested by the loss of the “middle periodic ray” whep
stability range is extended to values less thanyB, as has =0, because the logistic map is only being perturbed with
the range ofyy, for which limit cycles with periods that are two different perturbation amplitudes; and —a,/2. Pat-
multiples of three have been extended. terns similar to those in Fig. 2 were first examined by
Figure 2 answers the question of whether a perturbatioMarkus, who varied the logistic equation parameter accord-
can decrease the overall chaos for a nonlinear system overirzg to various symbolic sequencgsb].
broad range of parameters. It shows the effect of perturbing The result of perturbing the logistic map with a non-UPO
the logistic map with ar=2 and with aT=3 perturbation period is shown in Fig. 3. The only “off-resonance” pertur-
with 3.5<ay,<4 and 0<a;<0.2 for two different phaseg.  bations that can be applied are those with irrational periods
For T=2 and ¢=0, the percentage of periodic cases wasto the limits of computational precision. Figure 3 shows that
increased from 22.3% to 24.9% over this rangaganda; . a maximally irrational period ofT=3+(y/5—1)/2 (the
TheT=2, o= /3 case decreases the periodic solutions frongolden mean above) 3vith a;=0.05 destroys the periodic

FIG. 3. Effect on the logistic map of =3
+(y/5—1)/2 perturbation for,=0.05; all peri-
odic windows are destroyed.
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Lorenz Attractor T=2 T=3 T=3

FIG. 4. The Lorenz attractor and its first six

=5 T=s =6 UPO’s.

T=6

windows. The opening of periodic windows with resonant-cluster in integer multiples oAm. When this method was
perturbations and their closing with nonresonant perturbaapplied to the Lorenz equations, it was found thain
tions is a general feature of all the systems studied here. =124=9, which for a time step of 1/256 corresponds to a
temporal value of 0.480.04. This method can also be ap-
ll. THE LORENZ EQUATIONS plled to the three state-space variabl&&y(z) to find (m,s)
recurrent points. This method givesm=238+10, which
The Lorenz equation§56] specify a three-dimensional for a time step of 1/512 corresponds to Q#5B02, which is

flow given by the following equations: in excellent agreement with the Lathrop-Kostelich method.
. The UPQ's found using all three state-space variables bear a
X=0o(y—Xx), striking resemblance to the Lorenz attractor, as can be seen
. in Fig. 4. Note that for any given period, there areT —1
X=X(r—2z)-y, (6) distinct UPO's for the Lorenz attractor. Figure 5 shows the
) (m,&) histogram obtained using this method.
z=xy—bz A third method to find UPO’s was used to verify the

previous two results. Since the Lorenz attractor is low di-
Here the parameters=16,r =45.92, ancb=4 were used. nansional D,,=2.07 for these parametérsa Poincare

In this and the remaining cases, all differential equationgnap can be used to determine the periods of the UPO’s. Both
were in_tegrated W_ith a fourth-order Runge-Kutta methodof the values of the state-space variablesd ¢ (= wt) are
with a fixed step size, except where noted. Lorenz derivefecorded when the attractor trajectory crosses the ptane
these equations to model heat convection in adté con-  —r—1, which contains two of the fixed points of the unper-

vection Ce”, which consists of two horizontal, infinite pla'[es turbed attractor. If the elements of the time seriesxtinat
with a temperature difference &fT across the fluid between

the plates. After truncation of the fluid equations and renor: 35

malization of several of the fluid quantities, the parameter

is proportional to the temperature difference. Thus, in the

spirit of perturbing a physically accessible system paramete! .

the parameterr was perturbed according ta=rg

+r4 sin(wt). Note that a fixed-point solution is not possible A

unlessw=0 orr;=0. s |
The perturbation frequency is chosen by identifying the

UPOQO'’s using a slight variation of the method of Lathrop and 4

Kostelich [57]. In their work, UPQ’s are identified from a

time series by reconstructing the attractor with time delay: 1

and then measuring the number of time steps it takes for th

trajectory to return to within a distaneeof any given point.

A suitable value fore is found to be roughly a factor of 2 0 , : : : :

larger than the average state-space distance between succ 0 2000

sive points on the reconstructed attractor. If a given starting "

point on the trajectory returns to withig of itself afterm FIG. 5. Histogram of the number of UPO’s with recurrence time

steps, it is called annf,e) recurrence point. When thignt  m for the Lorenz equations. The vertical lines are spacedrat

for all (m,e) recurrent points are histogrammed, the data=238.
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FIG. 6. Results of perturbing the Lorenz equations with various G argest Lyapunov exponent for the perturbed Lorenz

erturbations of frequendyand amplitude ;. Arrows denote vari- equations. Black corresponds to a LLE of O; lighter colors indicate
P qu P 1 . higher LLE’s. The arrows indicate the same frequencies as in
ous UPO frequencie€.e., T2 corresponds to a period-two UPO Fid. 6
and their harmonics. Black periodic, dark gray»2<Dyy<3, g-°

and light gray— 3<Dyy<4. ) ]
frequency or more, and it may occur because the period-one

results are denoted as,, the intersection of the 45° line UPO for the Lorenz equations does not exist. However, the

with plots of x, s VS X, denotes UPO’s of perioll/2, and stabi_lizedT=3 UPO in the upper right-hand corner of Fig. 8 _
the temporal value of this period can be obtained frém provides one counterexample, since a period-three UPO is
This analysis gave a value of 0:£6.03, which agrees well stabilized by a frequency that is closest to that of the nonex-
with the values previously obtained. istent period-one UPO. Another typical occurrence is that a
To understand the stabilizing effect of periodic perturba-9iven perturbation frequency may stabilize several different
tions on the Lorenz equations, numerous perturbation freYPO'S. Figure 9 shows four such cases in which a period-
quencies and amplitudes were examined. Frequencies rang€ frequency aliases a period-four and period-eight UPO, a
ing from 0.5 to 5.0 Hz were used, which corresponds to jusPeriod-two frequency aliases a period-sixteen UPO, and
less than the frequency of a period-four UPO to four timedwice a period-one frequency aliases a period-twelve UPO. It
the frequency of a period-two UPO. Amplitudes up to 66%IS also interesting that the width of effective perturbations in
of r, were used. Fow andb held constant as prescribed feduency gets narrower as higher-order UPQO's are stabi-
above, the Lorenz equations are chaotic from31.375 to lized, and that these higher-order UPQO’s require larger per-

r>100. Thus, the largest amplitude perturbations; ( turba,tion ampli_tgdes to stabilize them. .Once any of the
—=30.25) bring the perturbed parameter =45.92 UPQ'’s are stabilized, however, they remain controlled for as

+r, sin(wt) into a periodic regime for part of the drive pe- Iong ashthe pertu_rb_atlondls on.l < th H itude of
riod. However, many stabilizing amplitudes were too small h not etr) u.nan_t|c.|pate r%sut 'Sf.t ztfas the amri]ltu eo
to do this. Combinations of driving amplitudg and fre- € Perturbation Is increased at a fixed frequency, the system

quencyf = /27 were raster scanned, and the results wer&an pass through regimes of control and chaos. Control with

classified according to the Lyapunov dimension of the result-Small perturbations happens only near natural frequencies of

various UPQ's, but as the amplitude is increased, chaotic and

»
»

{ <

ing perturbed attractor in Fig. 6. The dominant feature is &
reduction in dimension at frequencies corresponding to the
UPQ'’s and their multiples. Note that the dimension of the z z
perturbations ; were applied.
Figure 7 shows that the behaviorDfy is replicated with
the LLE, which is computationally easier to determine in O 4
general. Figure 8 shows some of the UPQO’s that were stab
are decreased for cases controlled with small perturbation; Z z
since the attractor is confined to a smaller region of statt
space. For large perturbations, however, the fluctuation am
plitudes increased, since the attractor size scales roughly lir
early withr.
One surprising discovery was that the frequency of the y
tor is rarely the natural frequency of that UPO. For example,
a period-two UPO with a natural frequency of 1.1 Hz is  FIG. 8. Various stabilized UPO’s for the perturbed Lorenz equa-
commonly stabilized by a perturbation frequency 2.2  tions. clockwise, from upper left corner: period 2r,(f)
Hz. This result is typical in that the smallest frequency usu-=(4,2.412); period 3, r(;,f)=(3.375,2.072); period 6,r¢,f)

system immediately increased by 1.0 when arbitrarily smal
G/
lized with small perturbations. The fluctuation amplitudes
perturbation that stabilizes a given UPO in the Lorenz attrac N
ally required to stabilize a given UPO is twice its natural =(23,0.712); period 4,r(,f)=(13,1.108).



5318 K. A. MIRUS AND J. C. SPROTT PRE 59

UPO. This effect was termed “noisy periodicity” by Lorenz
[58], and if there is room for some tolerance in the periodic
solution that is sought, these solutions may suffice.

As with the logistic equation, small periodic perturbations
stabilize the Lorenz equations when applied at frequencies
near the natural frequencies of UPQO’s. Once a limit cycle is
achieved, it remains stable for as long as the perturbation is
2 on. Large perturbations stabilize the Lorenz equations by
mode locking(stabilizing a highly distorted UPOIt should
be noted that Singet al.[59] were successful at controlling
the Lorenz equations both numerically and experimentally in
a system known as a thermal convection loop. Their method
y was simpler than the OGY method in that they used a simple
proportional feedback scheme. The advantage of the method
presented here is that it is even simpler because it involves
no feedback whatsoever. A disadvantage of this method is
that it is impossible to stabilize fixed points in the chaotic
system.

X

FIG. 9. Some “aliased” UPQO’s. Clockwise, from upper left
corner: period 4, i;,f)=(4.25,2.204); period 8, rg,f)
=(4.125,2.156); period 12,r(,f)=(18.625,4.624); period 16,
(rq,f)=(22.750,0.992).

IV. THE RO SSLER EQUATIONS
periodic windows appear. The second band of periodiaity
the region kK f<2.5 andr,>15 of Fig. § corresponds to a
situation where the amplitude of the drive is so great that the

The Rasler equationf60] are

system is mode locked to the perturbation. In this and similar x=-(y+2),
cases, the limit cycles no longer resemble any unperturbed )
UPO but are akin to the top two plots in Fig. 10. This in- y=Xx+ay, (7)

creasing distortion of the underlying attractor with larger
perturbations is a common effect even for frequencies that
stabilize a natural UPO.

The choice of initial condition can lead to differing re-  Here, the parameters=b=0.2 andc=5.7 were used.
sults, as seen in the bottom two plots of Fig. 10. AlthoughRassler derived these equations as a simpler example than
the specific details of a trajectory like this can be differentthe Lorenz equations in the sense that they have only one
for different initial conditions, no cases were found in which quadratic nonlinearity, and the flow they generate has only a
different initial conditions led to totally different behavior, single spiral(see the attractor in the upper left of Fig.)12
such as the stabilization of different UPO'’s. See Sprotf{61-63 for even simpler examples of chaotic

In addition to these results, some long-period limit cyclesflows. Although the Rssler equations have a simpler form
and unique strange attractors were also seen. Frequentifhan the Lorenz equations, they were found to be more dif-
when a perturbation is applied, a chaotic attractor resultsfjcult to control due to the presence of a dominant frequency.
except that the chaos is limited to a thin band around somgince the Resler equations and their parameters have no
physical significance, the parametewas chosen arbitrarily
to be perturbedc=cy+ c; sin(wt). Analysis of 500 UPQO’s
identified using the f),e) method on all three state-space
variables determined thatm=1488*4, which for a time
step of 1/256 corresponds to 5:80.09. A Poincaranalysis
of the UPO'’s yielded a similar result of 5.8®.02.

y To assess the effect of periodic perturbations on the
Rossler equations, perturbation amplitudes and frequencies
in the range 8<c,<3.1 and 0.05:f<0.4 were examined,
corresponding to amplitudes up to 54%ogfand frequencies
of just less than that of a period-three UPO to more than
twice the frequency of a period-one UPO. Foandb held
constant as prescribed above, thes§ter equations are cha-
O ¥ otic from c~4.20 toc>13. Thus, perturbation amplitudes
greater thanc;=1.5 bring the perturbed parameter5.7
+ ¢, sin(wt) into a periodic regime for part of the drive pe-

FIG. 10. Top two plots: limit cycle achieved through mode lock- 10d. However, as was the case with the perturbed Lorenz
ing: (ry,f)=(25,2.176) (left), (r,,f)=(22,1.2) (right). Bottom €quations, many stabilizing amplitudes were smaller than the
two plots: slightly different period-two IUPO’s, both stabilized with C1=1.5 limit. Figure 11 shows that perturbations near the

z=b+z(x—c).

X X

(rq,f)=(4.75,2.328)
(X0.Y0,20,$0)=(1,1,1,0)
(right).

but

different
(left);

initial

conditions:

(X0,Y0,20,%0)=(1,1,10,0)

UPO and its multiples decrease the dimension of the attrac-
tor. Figure 12 shows some of the UPQO’s that were stabilized
with small perturbations, as well as a noisy limit cycle.
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and Roppd 67] studied the effect of thermally coupling two
thermosyphons, which is equivalent to studying two adjacent
rolls in a Baard convection layer. Jackson and Kodogeor-
giou [68] extended this work by studying lon@p to 128
lattice siteg periodic chains of thermosyphons. They in-
cluded both viscous and thermal coupling between adjacent
vortices in their model equations but only examined the case
with viscous coupling. Loren9] also studied the effect of
coupling seven Lorenz-like systems together to illustrate that
global weather systems most likely do not possess low-
dimensional attractors. Here the coupled Lorenz cell model
studied by jackson and Kodogeorgiou is considered:

31

115 I 4 4 i B 0 IS 5 (2 I Ly 1 L 0 O O )

0 ‘ 0.15 ; X =0 (Yi—Xi) = w(Xi+ 1+ X -1+ 2X),
2 .
B Yi=—YiT Xzt rX, ®
FIG. 11. Results of perturbing the Bsler equations. The arrows .
show the frequencies of various UPO’s and their harmonics. Zi=XYy;—bz.
Black — periodic, dark gray-2<Dyy<3, and light gray— 3 ] ] o ]
<Dyy<4. Here,i denotes the lattice site €£0,1,...N—1) andu is the

viscous coupling constant. Each lattice site is coupled to one
neighbor on each side. This system is taken to have periodic
boundary conditionsxy=Xqg, YN=VYo. ZN=2Zg. The param-
Coupled Lorenz models are lattices with each site occueters used here were=10, u=3, r=34, b=1, and N
pied by a set of Lorenz equations. Lawargtyal. [64] have  =32. In the thermosyphon paradigm,corresponds to the
studied pairs of coupled Lorenz systems in order to find amverage fluid velocity around the loopcorresponds to the
improved stability regime for a single-mode laser by cou-temperature difference between points at “12 o’clock” and
pling two lasers together. Malky§5] and Yorke and Yorke “6 o’clock,” and z corresponds to the horizontal temperature
[66] showed that the Lorenz equations, which were derivedlifference. The authors computed that the system has stable
as an approximation of the Raleigh+Bed system, exactly fixed points forr<r.=17.5, and it was found that the sys-
describe the dynamics of a thermal convection loop. A thertem exhibits chaotic behavior fardown to about 23.
mal convection loop, or thermosyphon, consists of a narrow Computing the Lyapunov exponent is computationally in-
diameter pipe containing fluid, which is bent into a torus,tensive for high-dimensional chaotic systems, since the
stood upright in a vertical plane, heated uniformly over thememory and time required both scaleN& For this reason,
bottom half, and cooled uniformly over the top half. Davis a lattice with onlyN=32 sites(and thus X32=96 vari-

V. COUPLED LORENZ EQUATIONS

Unperturbed Attractor Noisy Limit Cycle Stabilized T=2

// /

Stabilized T=3 ' Stabilized T=4 Stabilized T=5

FIG. 12. Various attractors
arising from the perturbed Reler
equations:  The  unperturbed
Rossler attractor; a noisyT=3
limit cycle, (cq,f)
=(1.600,0.182); aT=2 limit

cycle, (c4,f)=(1.200,0.250); a
T=3 limt cycle, (cq,f)
=(0.100,0.114); aT=4 limit
) cycle, (c4,f)=(0.750,0.272); a
- T=5 limit cycle, (c;,f)

=(0.450,0.106); aT=6 limit
Stabilized T=6 Stabilized T=7 Stabilized T=8 cycle, (c;,f)=(0.100,0.286); a
T=7 limit cycle, (cq,f)
=(1.050,0.356); aT=8 limit
cycle, (c4,f)=(1.050,0.168).
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Perturbed
1014 . 1 Unperturbed 15

=0.507 x
=0.338 o
=0.254 o
=2.028 -
=1.595 ¢
=2.412 «x

Site

32

Time

FIG. 13. Results of perturbing a coupled Lorenz system as evi- F!G- 14. Spatiotemporal plot of; vs time for the coupled Lo-
denced by the Lyapunov dimension and the magnitude of the LLE€NZ €quations. Left: unperturbed; right: perturbation amplitude of
The solid horizontal lines indicate values for the unperturbed sys(f1:f)=(4,1.014). The perturbed case is a period-two limit cycle.

tem. Note that a perturbation frequenty 1.014 produces a limit the dimension of the system. None of the frequencies in-
cycle forr,=4.0, 10.0, and 12.0. creased the dimension by more than 1, as has been seen with
perturbed coupled logistic equations. Frequencies that are

ableg was considered, and a first-order “leapfrog” integra- further off-resonance may excite additional, latent degrees of

tion S(_:heme was useq. It was fOUF‘d that great care had 1o k?F"eedom. This case could have important applications in bio-
used in choosing the integration time step so that the Classfbgical and other high-dimensional systems, where it is

cal Gram-Schmit orthonormalization technique used fo,rsometimes desirous to “uncontrol” chap&1].

computing the Lyapunov exponent spectrum was nUmeri-  an important point in choosing the perturbation fre-
cally stable. In the absence of a perturbation, this 96qyency for this case was that the frequency of the period-one
dimensional system has an attractor with a Lyapunov dimengpg is roughly half the frequency of the power spectral peak
sion of 65.8. The uncoupled Lorenz equations for thesef any single state-space variable. The power spectral peak
parameters were measured to hallgy=2.06-0.005 occurs at roughly 2 Hz, which corresponds to the period-one
which yields an expected dimension for the coupled systenypPO for a single Lorenz attractor. Thus, the global dynamics
of 32x2.06=65.9. This value is in good agreement with of the coupled system seem to evolve more slowly than the
what was measured for the coupled system, although ifuctuations in any state-space variable. This implies that the
would not have been surprising if the coupling had reducegower spectral peak frequency is misleading when trying to
the dimension. As with the single Lorenz model, the per-predict a useful perturbation frequency for this system. The
turbed parameter was=r,+r sin(wt). A reasonably accu- slower global dynamics are shown in spatiotemporal plots in
rate calculation oDy for even this modest lattice size re- Fig. 14, which shows the value af, which corresponds to
quires the order of a day of computation for one perturbationhe average fluid velocity for each site versus time. The per-
case. Thus, there are no extensive perturbation amplitudearbed case in Fig. 14 shows the period-two limit cycle
frequency scans as before, but Fig. 13 shows the Lyapunoachieved with the small-amplitude period-one perturbation.
dimension and LLE as a function of perturbation amplitude  This result is particularly encouraging in view of its sim-
for seven different perturbation frequencies. plicity when compared to other work in controlling high-
The perturbation frequencies were once again chosen byimensional systems. The earliest method advanced for con-
identifying the frequencies of the UPO's for the coupled sys-rolling high-dimensional chaotic systerfig] was a straight
tem. The period of the period-one UPO was found to beapplication of the OGY method, and it proved to be cumber-
1.014+0.050. Remarkably, a small perturbation amplitude ofsome in application. Recent methods of controlling high-
ry=4, which is only 9% the unperturbed value, resulted indimensional chaotic systems have focused on arrays of con-
limit-cycle behavior for a perturbation frequency equal to thetrollers that use an OGY-like method based only on local
frequency of a period-one UPO. Perturbations of frequencyneasuremen{s2], delayed oscillating feedba¢k3], or lin-
f=2.028(which is twice the period-one UPO frequenand  ear control laws optimized by placing the controllers accord-
f=1.595 (which is about three times the period-two UPOing to the symmetry of the systenv4,75. While these
frequency significantly decrease the dimension of the sys-methods are effective, the method presented here has the
tem. Even if a perturbation does not produce limit cycles,advantage that no feedback is required, in sharp contrast to
drastically decreasing the dimension of a high dimensiorfeedback applied by a potentially large number of control-
system is a significant step toward controlling40]. Pertur-  lers. The only requirement is that there exists a suitable glo-
bations of frequency corresponding to a period-twb ( bal parameter accessible for applying a periodic perturbation.
=0.507), a period-threef &€ 0.338), and a period-four UPO
(f=0.254) decrease the dimension of the system with re- VI. THE YOSHIDA EQUATIONS
spectively larger perturbations. A perturbation frequency of
f=2.412, which was successful at eliminating chaos for the The Yoshida equations are a set of ordinary differential
single Lorenz system, required a large amplitude to decreassguations derived by Yoshidet al. [76] from a 1D (i.e.,
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functions have a radial dependence 9r8gt of partial dif- veals a three-wave coupling process, whereby two modes
ferential equations meant to model the nonlinear interactionsouple to a third withkg=k;+k, [78]. In MST, magnetic
of magnetic islands in a low-beta tokamak plasma in a cyfluctuations are dominated by a few=1 modes; namely
lindrical approximation. The method for reducing the (m n)=(1,6) and(1,7). These two modes couple strongly to
(infinite-dimensional set of PDE’s to ODE'’s involves the the (0,1 and (2,13 modes. The0,1) mode is much more
application of the force-free conditidnxX B=\B to approxi-  gominant than thé2,13 mode, but it is located at the rever-
mate the structure of the magnetic fidle- By+b. The non- 551 syrface of the plasma, where the toroidal magnetic field
linear interactions are represented by fluctuations in the ra;apishes. This violates the assumption of Yostedal. that
dial magnetic field k), the poloidal magnetic fieldb),  the toroidal field is nearly constant across the plasma. How-
and rt]hefnorrr}ahzed pa.rallel current dens(D,Ly. , ever, the(2,13 mode lies between th@,6) and(1,7) modes,
St o st o <pa o 1 o ichion TER means 1 ooida e  ealycontart acoss ese
. L three modes. Thus thg,6), (2,13, and (1,7 modes were
by @ scalar function\. The justification for the force-free _chosen to model the magnetic fluctuations in the MST. These

structure of the field is that the intensity growth rate is suf d i I d the ol T8
ficiently small that the current perpendicular to the magnetic,mo es aré not equally spaced across the p asma(1lBe
(2,13, and (1,70 modes reside approximately ata=0.3,

field is negligible, which is indeed the case for a tokamak _ . o
plasma in which the parallel current is significantly larger0-36: and 0.42, respectively. Incorporation of these modifi-
than any perpendicular currents. In the case of a reverseG@lions results in the following nine equations for tis
field pinch plasma confined by a perfectly conducting toroi-— 3 Model:
dal shell, the relaxed state is defined by the force-free con- ) ’
dition [77]. X1=a;X1X3+ axXoX3,

By combining the time evolution of the magnetic field,
the time evolution of the magnetic helicity, and a hyper-  X,=a;X,X3— a,X; X3+ as(X5+x2)(a,— 2X3+Xg),
resistivity added to Ohm'’s law to describe the effect of the
nonlinear coupling of the tearing modes, Yoshiteaal. ob- 3= x2[as(X2+x2)(ay— 2X3+ Xg) + A,
tained the following set of three ODE'’s for each interacting
island in a plasma: : 2
X4: a1X4X6+ a2X5X6 y

. ’7] 2
b, n»=——N\b, ,—= VA, by, .
L n=en X5=a1XgXa— ayX4Xg+ 0.83%3(X5+ X5— X2 — X3)

. X (X3— 2Xg+ Xg), (10
ba,n:_%)\ﬁba,n"'\/)\nbr,n : o

. 2 2 2
Xe= Xgl @5(X3+X5)(X3—2Xg+Xg) +a6],
Cc br n+1t b% n+1 (br2n71+ b% nfl)

+ ©) :
Bo Ay X7= a1X7X5+ ayXgXg,
)\n+l+)\nfl_2)\n ngal)(gxg_a2X7X9+0.71@3(a7_X‘21_X§)(X6_2X9),
A% , o2 2 2
X9=Xg[ a5(X7+Xg) (Xg— 2Xg) +as].
. C Nnr1tAn_1—2A E
N2 2 2 n+1 n—1 n h . .

)\n_)\n[z_B(Z)(br,n"_ba,n)( Aﬁ )+B_O. Here, the parameteag was perturbed, since it corre-

sponds to the axial electric field;,. Parameters chosen to
Here, b, , by n, and\, are, respectively, the radial mag- give the best match between the autocorrelation functions of
netic field fluctuation, the poloidal magnetic field fluctuation, xg and a single poloidal field pick-up coil on the wall of
and the parallel current density at a radial grid point indexedMST were {a;} ={—0.578 13;-1.7339, 9.78195, 0.668 11,
by n. 7 is the resistivity u is the permeability of free space, 5.46545, 0.661 26, 3.639 B8with time in units of the digi-
V is the Hall velocity,C is a constant proportional to the tization time of 5us. A comparison of the time series for
tearing mode growth ratd3, is the equilibrium axial mag- MST data and the model equations is shown in Fig. 15. The
netic field, A,, is the distance between the-1 andn+1 period-one UPO had a temporal period of 15@85. This
grid points, andg,, is the axial electric field used to drive the corresponds to 792.5 us in the MST, which is a frequency
plasma current. The parametEy, was chosen to be per- of 12.7+£0.4 kHz. Like the coupled Lorenz equations, the
turbed, since it is an accessible experimental parameter. period-one UPO has a frequency significantly lower than the
Yoshida et al. used these equations to model equallypeak power spectral frequency of 40 kHz. Figure 16 shows
spaced two-mode interactionsl € 2) in a tokamak plasma. that the most effective controlling frequencies are the UPO
This two-mode model was successfully controlled with peri-frequencies and their harmonics rather than the peak power
odic perturbations, but a three-mode model was sought thapectral frequency. An analysis of the electron heat transport
would describe an MST-like plasnjd9] more accurately.  due to radial magnetic field fluctuations in a Rechester-
Modifying the Yoshida equations to model MST involves Rosenbluth moddl79] showed only a sligh¢~10%) reduc-
changing some of the boundary conditions, and accountingjon for a perturbation at four times the period-one UPO
for the fact that bispectral analysis of experimental data refrequency.
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FIG. 15. A comparison of the measured poloidal field fluctua-
tions at the wall of MST and from the outermost magnetic island in  FIG. 17. Spatiotemporal plot of poloidal field fluctuations at the
the N=3 Yoshida model. The bottom plot shows the autocorrela-wall of MST. The dominant feature is a rotating resistive tearing
tion function for the two signals. mode with a frequency of about 14 kHz.

VIl. A NEURAL NETWORK MODEL FOR MST adjusted by a variant of simulated annealing so thatNhe
. outputs of the neurong;(t+1) at T successive time steps

An artificial neural network model can also be used Ofjs'an N x T matrix of training points obtained from an array
study prospects for controlling f_Iuctuatl_ons in MST. The neu-¢ \ poloidal field magnetic pickup coiléneasuringiBp /dt
ral net chosen hall neurons, with the input of each neuron i o \ail of MST. The training set hasl=64 and T
consisting of the superposition of.the weighted sum of the_ 255, with a sample time of &s, and was rescaled so that
output of all the neuron@ncludmg itself. Th? Neurons aré e gata fall in the range-1 to +1 as shown in Fig. 17. The
represented by hyperbolic tangent squashing functions th?Jtominant feature is a rotating resistive tearing mode with a

provide the nonlinearity necessary for chaos: frequency of about 14 kHz. After training the net for several
N days of 200 MHz CPU time, the output of the network cap-

X (t+ 1):tany( s>, Wijxj(t))- (11)  tured some sense of the rotating mode seen in the experi-
=1 ment, with a frequency of about 11 kHz. The model was not

] . ~ chaotic, however, as evidenced by calculation of the LLE,
The parametes is a scale factor on the weights and is \which is indistinguishable from zero. To obtain a chaotic
initially chosen as=1. TheNXN matrix of weightsW;; is  solution, the parametes was increased to 1.2, giving the
result in Fig. 18. This case has a largest Lyapunov exponent
0.3 . (basee) of 0.028/iteration. The rotating oscillation persists at
a frequency of about 10 kHz. A perturbatiog=s
+ s, sin(2xft) with sp=1.2 was added, and the perturbation

0() =Tl e L T T A A U T LT U S

Toroidal Angle

0 -
0 T
1

T

T T in'T T 0.5

Tl

-

FIG. 16. Effect of perturbing the chaotic Yoshida equations
modeling the MST The unperturbed parameter value agasEy,;
=0.66125. Black indicates limit cycle cases. Dark grap
<Dyy<3; light gray— 3<Dyy<4; white— 4<Dyy<5. The 360
unperturbed case has a dimensionpfy,=4.1. The dark arrows
indicate the frequency of the period-one UPO and its harmonics. FIG. 18. Spatiotemporal plot of a neural network trained to
The light gray arrows indicate the power spectral peak frequencynodel MST poloidal field fluctuations with the parametein-
and its harmonic. creased by 20% to yield chaotic solutions.
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n=1 and 6 coil sets that pierced the toroidal gap. Calcula-
tions from magnetic fluctuation data show that the dominant
UPO'’s for MST have a frequency of about 7 kHz, which is
about half the peak power spectral frequency of the tearing
modes. This result of the UPO having a slower time scale
than is indicated by power spectra is consistent with numeri-
cal results for high-dimensional systems.

There is no evidence that the small periodic perturbations
applied decreased the correlation dimension of the system
(D=151[80]) to a level that could be measured. However,
this result does not mean that they had no effect; rather that
the effect could not be adequately diagnosed within the lim-
its of the finite amount of noisy data. Higher-power experi-
. ‘ ments with better-tuned perturbations in the future may show

/ (kHz) 100 " s S .
positive effects, but it is uncertain if the perturbation can be

FIG. 19. Result of perturbing the chaotic MST neutral netproperly tuned for each plasma shot, since UPO analysis
model. Black indicates limit cycle behavior. White indicates theindicated slight differences in the peak of tha,€) histo-

LLE was approximately doubled. gram from shot to shot. Also, numerical results suggest that
the perturbation frequency has to be very close to the fre-

amplitude was scanned over the range9)<sgy, while the  quency of the UPO, and this frequency may change some-

frequency was scanned over the rangef& 100 kHz. The what during and between shots.

LLE was calculated for each combination f andf. The

result is plotted in Fig. 19 with a gray scale in which the

darkest color indicates an exponent of zdohaos com- IX. SUMMARY

pletely suppressedand the lightest color indicates an en- o ) )

hancement of the chaogapproximate doubling of the  Periodic perturbations have been applied to several cha-

Lyapunov exponent otic numerical systems by modulating a system parameter. In

The general result is a decrease in chaos for increasingVery case, the optimum frequency to obtain control with a
perturbation amplitude, with certain frequencies such as 18Vinimum perturbation amplitude was found to be the fre-
kHz being especially effective. The striations in the upperquency of the UPO's obtained from the dynamical fluctua-
left are a numerical artifact caused by truncating the calcutions of the system. One interesting result was that plots of
lation at a time(500 iterationg that is not an integer number controlled cases on a perturbation frequency-amplitude plane
of perturbations cycles. Since the Lyapunov exponent gene@re dissimilar to the Arnold tongu¢s4,81 usually seenin
ally increases witfs, chaos is enhanced when the final valueSystems that undergo a quasiperiodic route to chaos. This
of s is positive and diminished when it is negative for low difference has been observed in at least one other experiment

0

perturbation frequencies. [43]. Also, a given frequency can stabilize more than one
UPO. Another interesting discovery was that UPQO’s can
VIIl. PERIODIC PERTURBATIONS APPLIED TO MST have vastly different time scales than the fluctuations in a

given state-space variable, which means that the best fre-
Periodic radial magnetic field perturbatiofs a few tens  quencies to perturb are not always those with the most
of gaus$ were applied to MST plasmas by driving a set of power.
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